OPTICAL DISK DEVICE

PROBLEM TO BE SOLVED: To enable the continuation of the recording or reproducing operation without interruption when the defective block is generated during the continuous recording or reproducing operation.

SOLUTION: When the defective block is generated on the optical disk 71 during the data recording or reproducing operation, alternate data of the defective block or the address of the defective block are continuously stored in a defect list 3 during at least one of continued data is recorded or reproduced. Then, the arrangement is made so that the alternate data stored in an alternate buffer memory 2 are written into the spare area of the optical disk 71 and the address of the defective block stored in the defective list 3 is written into the defective control area of the optical disk 71, after the recording of at least one of the continued data is finished or the reproduction of it is finished, or when the optical disk is taken out. COPYRIGHT: (C)2000 JPO
【発明の名称】 光ディスク装置

【要約】
【課題】連続した記録中または再生中に欠陥ブロックが発生した場合、記録または再生途切れなく継続させることができる光ディスク装置を提供する。
【解決手段】光ディスク装置において、データ記録または再生中に光ディスク71に欠陥ブロックが発生した場合、少なくとも1つの連続したデータの記録または再生を視している間、欠陥ブロックの代替データまたは欠陥ブロックのアドレスを代替パッファメモリ2、欠陥リスト3に格納し続け、少なくとも1つの連続したデータの記録終了後または再生終了後、または光ディスク取出し時に、代替パッファメモリ2に格納した代替データを光ディスク71のスベース領域に書き込み、欠陥リスト3に格納した欠陥ブロックのアドレスを光ディスク71の欠陥管理領域に書き込むようにした。
【特許請求の範囲】
【請求項１】光ディスクの欠陥管理手段を有する光ディス
ク装置において、データ記録または再生中に光ディス
クに欠陥ブロックが発生した場合、少なくとも１つの連
続したデータの記録または再生をしている間、欠陥ブ
ロックの代替データまたは欠陥ブロックのアドレスを光ディ
スク装置に設けたメモリに格納し続けることを特徴とす
る光ディスク装置。
【請求項２】請求項１記載の光ディスク装置において、少
なくとも１つの連続したデータの記録終了後または再
生終了後、または光ディスクを取出し時に、光ディスク装
置のメモリに格納した欠陥ブロックの代替データを光ディ
スクのスペア領域に書き込み、または光ディスク装置
のメモリに格納した欠陥ブロックのアドレスを光ディス
クのスペア領域に書き込むことを特徴とする光ディス
ク装置。
【請求項３】光ディスクの欠陥管理手段とデータ管理を
行うホストコンピュータを有する光ディスク装置にお
いて、データ記録または再生中に光ディスクに欠陥ブ
ロックが発生した場合、光ディスク装置からホストコンピ
ュータに対してエラー情報を共に欠陥が発生したブロッ
クのアドレスを送信することを特徴とする光ディスク装
置。
【請求項４】請求項３記載の光ディスク装置において、エ
ラー情報と共に欠陥ブロックの書き込みデータをデータ
としてホストコンピュータへ送信することを特徴とする光
ディスク装置。
【請求項５】光ディスクの欠陥管理手段とデータ管理を
行うホストコンピュータを有する光ディスク装置にお
いて、データ記録または再生中に欠陥ブロックが発生し
た場合、光ディスク装置から欠陥が発生したブロックの
アドレスを含むエラー情報を受信し、この欠陥ブロック
のアドレスをホストコンピュータのメモリに欠陥リス
トとして保持し光ディスクの欠陥管理を行う欠陥管理手
段を備えたことを特徴とする光ディスク装置。
【請求項６】請求項５記載の光ディスク装置において、
光ディスク装置からの欠陥ブロックのアドレスを含むエラー
情報を受信した場合、欠陥ブロックの書き込みデータ
としてホストコンピュータに送信することを特徴とする光
ディスク装置。
【請求項７】請求項５記載の光ディスク装置において、
光ディスク装置からの欠陥ブロックのアドレスを含むエラー
情報を受信した場合、欠陥ブロックのアドレスを欠陥リス
トとして退避し、欠陥ブロックのデータを欠陥ブロックの次のブロックに書き込み指定することを特徴とする光ディスク装置。
であるゾーン構成表を記憶するRAM74、一次欠陥リスト（欠陥リスト1）を記憶するRAM75、二次欠陥リスト（欠陥リスト2）を記憶するRAM76、入出力バファメモリー77、入出力回路78を備えている。

【0007】RAM74、RAM75、RAM76には後述する光ディスクのリードイン領域の末尾およびリードアウト領域の先頭に対それぞれ2重化して記録されているゾーン構成表、欠陥リスト1、欠陥リスト2がそれぞれ退避、格納される。

【0008】データ管理部分80はホストコンピュータ部600からなり、アプリレーションプログラムを格納する記憶領域81、データ管理情報を格納する記憶領域82およびオペレーティンシステム情報を格納する記憶領域83を備えたメモリ、入出力バファメモリ84、入出力回路78と情報を入出力を行うためのインタフェースを形成する入出力回路75を機能的に備えている。

【0009】上記構成の光ディスク装置において、ホストコンピュータ部600からATAPI等のインターフェースを通じて光ディスク装置部分700内のユーザデータにアクセスする時は、光ディスク71のファイルシステムで使用する論理アドレスを用いる。ホストコンピュータ部600から論理アドレスを用いて光ディスクの要求が来たと、光ディスク71のリードイン領域の末尾およびリードアウト領域の先頭に対それぞれゾーン構成表と欠陥リスト1および欠陥リスト2を参照しながらアドレス変換部73によってそれらを物理アドレスに変換し、データ復調・アクセス制御部72に送付する。これでデータがデータ・チャネルを通して読み出しされホストコンピュータ部600へ転送される。

【0010】光ディスク装置は図7（a）に示すように、リードイン領域、データ領域およびリードアウト領域に区分されている。図7（b）で光ディスクの物理アドレスと欠陥管理領域およびデータ領域の位置を示す。

【0011】DVD－RAM装置部分700には欠陥リスト（一次欠陥リスト（PDL、Primary Defect List）と二次欠陥リスト（SDL、Secondly Defect List））を持っており、ゾーン構成表と共に光ディスク71の内周側のリードイン領域の末尾および外周側のリードアウト領域の先頭に対それぞれ2重化して記録する。この領域を欠陥管理領域（DMA、Defect Management Areas）と称している。合計5つの欠陥リストが正常に保存されれば、すべて同のものとなる。

【0012】図8にゾーン構成表（DDS、Disc Definition Structure）を示す。DVD－RAMディスク（4.7GBtypeA）ではデータ領域は35のゾーンに分割されており、さらに光ディスクの内周側にスペア領域が設けられている。ゾーン構成表には各ゾーンの開始位置を示す論理アドレス番号（LSN）が記載されている。DDS／PDL更新カウンタは4つずつ欠陥リストが一致しなくても最も新しいゾーン構成表を特定するために使用する。

【0013】DVD－RAM装置ではスリップ交換とリニア交換とスキップ交換という欠陥補償方式を採用している。

【0014】スリップ交換は図9によって説明する。スリップ交換は初期欠陥に対して適用する。DVD－RA

Mディスクのセクタにおいて欠陥セクタを発見するとき、そのセクタを飛ばす。代わりに欠陥セクタを使用する。欠陥セクタはアドレス情報やデータ情報の誤りから判断する。スリップ交換した初期欠陥は欠陥リスト1（PDL、Primary Defect List）に登録する。

【0015】欠陥リスト1にはスリップ交換した欠陥セクタの物理アドレスが格納され、最大7676の欠陥登録ができる。図9において欠陥リスト1と、欠陥セクタのない場合のユーザ領域aと、欠陥セクタのある場合のユーザ領域bとを示している。欠陥セクタはその物理アドレスが欠陥リスト1に順次格納される。図9において示すように、内側側にm個のセクタに欠陥があるときは各欠陥セクタの物理アドレスが欠陥登録番号1～mに格納され、ついて外側側にm個のセクタに欠陥があるときは各欠陥セクタの物理アドレスが欠陥登録番号（m＋1）～（m＋n）に格納される。

【0016】スリップ交換はデータ領域内で行われる。例えば、図9に示すように欠陥セクタが、m個のセクタと、n個のセクタで発生したとき、そのユーザ領域の先頭にて（m＋n）セクタがスペア領域の先頭にずれ込む。

【0017】図10によってリニア交換を説明する。リニア交換は2次欠陥に対して適用する。リニア交換は誤り訂正ブロック単位で行わないため、規格以上の誤りのある行を発見すると、そのブロックは欠陥と判定して使用しない（図10ではブロックA）。これの代わりに光ディスクのスペア領域にあるブロックを使用する（図10ではブロックA'）。ここで、1ブロックは連続する有効セクタ（欠陥セクタを除いたセクタ）で形成される。

【0018】リニア交換を受けた部分では、欠陥セクタを通過するたびにスペア領域へアクセスし、データの記録再生作業を行う。代替させたセクタにはなるセクタと同じ論理アドレスが付けられる。2次欠陥については、欠陥リスト2（SDL、Secondly Defect List）に登録する。

【0019】リニア交換の場合は、欠陥ブロックの先頭セクタの物理アドレスと交換されたブロックの先頭セクタの物理アドレスが2次欠陥リスト2に登録される。

【0020】次に、図10に示すスキップ交換を説明する。スキップ交換はリニア交換と同じく2次欠陥に対して適用する。スキップ交換は特にリアルタイムAの（オーディオ・ビデオ）データを記録する場合等に用いる。スキップ交換は誤り訂正ブロック単位で行わないため、規格以上の誤りのある行を発見すると、そのブロックは
欠陥と判断し使用しない（図10ではブロックB）。これの代わりに次のようなブロックを使用する（図10ではブロックB'）。【0021】スキップ交差の場合は、欠陥ブロックの先頭セクタの物理アドレスがSLRフラグビットと共有
欠陥リスト2に記憶される。
【0022】代替させるセクタには元のセクタと同じ論理アドレスが付けられる。2次欠陥については、欠陥リスト2に登録する。リニア交差との判断は、代替させた
ブロックの先頭セクタの物理アドレスに00000000hを記憶し、SLRフラグビットを1にセットすることにより
行う。ここで、hは16進数表示であることを示し
ている。
【0023】発見が解決しようとする課題】しかしながら、上記し
た従来の光ディスク装置によるときは、リアルタイム記
録専用に選択したデータを記録を行っている場合、記
録中にリニア交差を行うと光ディスクの内側周辺の欠陥
領域に代替データを書き込むために、ピックアップの
移動が行われ回線記録が間に合わなくなり、記録が中
断してしまう場合があるという問題点がある。
【0024】さらに、スキップ交差の場合でも通常
したデータ記憶途中に光ディスクの内外周辺の欠陥管理
領域の欠陥リストのデータを書き換えると、記録の場
合と同様にリアルタイム記録が中断してしまう場合が生
ずるという問題点がある。
【0025】本発明は、通常した記録中に再度に
欠陥ブロックが発生した場合、記録または再生を途切られ
ることなく継続させることができると光ディスク装置を提
供することを目的とする。
【0026】課題を解決するための手段】本発明の請求項1に記載
の光ディスク装置、光ディスクの欠陥管理手段を有す
る光ディスク装置において、データ記録または再生中に
光ディスクに欠陥ブロックが発生した場合、少なくとも
1つの連続したデータの記録または再生をしている間、
欠陥ブロックの代替データまたは欠陥ブロックのアドレ
スを光ディスク装置に設定したメモリに格納し続けること
を特徴とする。
【0027】本発明の請求項1にかかる光ディスク装置
によれば、データ記録または再生中に光ディスクに欠陥
ブロックが発生した場合、少なくとも1つの連続したデ
ータの記録または再生をしている間、欠陥ブロックの代
替データまたは欠陥ブロックのアドレスが光ディスク装置
に設定したメモリに格納され続けるために、光ピック
アップをアドレス記録のために移動させることが一時的
に不要となって、データ記録または再生が中断させられ
ることはなくなる。
【0028】本発明の請求項2に記載の光ディスク装置
は、請求項1記載の光ディスク装置において、少なくと
も1つの連続したデータの記録終了後または再生終了
後、または光ディスク取り出し時に、光ディスク装置のメ
モリに格納した欠陥ブロックの代替データを光ディスク
のスペア領域に書き込み、または光ディスク装置のメ
モリに格納した欠陥ブロックのアドレスを光ディスクの欠
陥管理領域に書き込むことを特徴とする。
【0029】本発明の請求項3にかかる光ディスク装置
によれば、少なくとも1つの連続したデータの記録終了後、
または再生終了後または光ディスク取り出し時に、光
ディスク装置のメモリに格納した欠陥ブロックの代替デ
ータが光ディスクのスペア領域に書き込まれ、または光
ディスク装置のメモリに格納した欠陥ブロックのアドレ
スを光ディスクの欠陥管理領域に書き込まれるために、
代替データの書き込みのために光ピックアップを移動
させることができる一時的に不要となって、データ記録または
再生が中断させられることはない。
【0030】本発明の請求項3に記載の光ディスク装置
は、光ディスクの欠陥管理手段とデータ管理を行うホス
トコンピュータを有する光ディスク装置において、データ
記録または再生中に光ディスクに欠陥ブロックが発
生した場合、光ディスク装置からホストコンピュータ必
要としてエラー情報と共に欠陥ブロックのアドレスを送
信することを特徴とする。
【0031】本発明の請求項3にかかる光ディスク装置
によれば、光ディスク装置からホストコンピュータに対
してエラー情報と共に欠陥ブロックのアドレスが送
信されるため、欠陥ブロックのアドレスの書き込みの
ために光ピックアップを移動させることが一時的に不要
となって、データ記録または再生が中断させられ
ることはなくなる。
【0032】本発明の請求項4に記載の光ディスク装置
は、請求項3記載の光ディスク装置において、エラー情
報と共に欠陥ブロックの書き込みデータを付加してホス
トコンピュータへ送信することを特徴とする。
【0033】本発明の請求項4にかかる光ディスク装置
によれば、エラー情報と共に欠陥ブロックの書き込みデ
ータが加算されてホストコンピュータへ送信されるため
に、エラー情報と欠陥ブロックの書き込みデータの書き
込みのために光ピックアップを移動させることが一時的
に不要となって、データ記録または再生が中断させられ
ることはなくなる。
【0034】本発明の請求項5に記載の光ディスク装置
は、光ディスクの欠陥管理手段とデータ管理を行うホス
トコンピュータと有する光ディスク装置において、データ
記録または再生中に欠陥ブロックが発生した場合、
光ディスク装置から欠陥ブロックのアドレスを含むエラー情報を受信し、この欠陥ブロックのアドレ
スをホストコンピュータのメモリに欠陥リストとして
保持し光ディスクの欠陥管理を行う欠陥管理手段を有
たことを特徴とする。
【0035】本発明の請求項5にかかる光ディスク装置
によれば、データ記録または再生中に欠陥ブロックが発
生した場合、光ディスク装置から欠陥が発生したブロッ
クのアドレスを含むエラー情報を受信し、この欠陥ブロッ
クのアドレスをホストコンピュータのメモリ上に欠陥
リストとして保持し、光ディスクの欠陥管理を行う欠陥管
理手段を備えたために、欠陥ブロックのアドレスを含む
記録するために光ピックアップを移動させることが一時
的に不要となって、データ記録または再生が中断させら
れることなくなる。
【0036】本発明の請求項6に記載の光ディスク装置
は、請求項5記載の光ディスク装置において、光ディス
ク装置から欠陥が発生したブロックのアドレスを含むエ
ラー情報を受信した場合、欠陥ブロックへの書き込みデ
ータをホストコンピュータの代替バックアップメモリに保持
すると共に、前記欠陥ブロックのアドレスと前記メモリ
上に保持した代替ブロックのデータのメモリアドレスとを
欠陥リストとして保持し、光ディスクの欠陥管理を行う
欠陥管理手段を備えたことを特徴とする。
【0037】本発明の請求項6にかかる光ディスク装置
によれば、光ディスク装置から欠陥が発生したブロック
のアドレスを含むエラー情報を受信した場合、欠陥ブロッ
クへの書き込みデータをホストコンピュータの代替パッ
クアップメモリに保持すると共に、前記欠陥ブロックのア
ドレスと前記メモリ上に保持した代替ブロックのデータのメモリアドレスとを欠陥リストとして保持し、光ディ
スクの欠陥管理を行う欠陥管理手段を備えたために、欠
陥ブロックへの書き込みデータを欠陥ブロックのアドレス
を記録するために光ピックアップを移動させることが一時
的に不要となって、データ記録または再生が中断させら
れることなくなる。
【0038】本発明の請求項7に記載の光ディスク装置
は、請求項5記載の光ディスク装置において、光ディスクリーク装置から欠陥が発生したブロックのアドレスを含むエ
ラー情報を受信した場合、欠陥ブロックのアドレスを欠
陥リストとして記録し、欠陥ブロックのデータを欠陥ブロッ
クの次ブロックに書き込み指して記録することを特徴と
する。
【0039】本発明の請求項7にかかる光ディスク装置
によれば、光ディスク装置から欠陥が発生したブロック
のアドレスを含むエラー情報を受信した場合、欠陥ブロッ
クのアドレスを欠陥リストとして記録し、欠陥ブロック
のデータを欠陥ブロックの次ブロックに書き込み指
定されるために、欠陥ブロックへの書き込みデータ欠陥
ブロックのアドレスを記録するために光ピックアップを
移動させることができ一時的に不要となって、データ記録ま
たは再生が中断させられることなくなる。
【0040】本発明の請求項8に記載の光ディスク装置
は、請求項6または請求項7記載の光ディスク装置にお
いて、少なくとも1つの連続したデータの記録終了後、
または光ディスク経由時に、ホストコンピュータのメ
モリー上に遮断した欠陥リストの情報または代替させたデ
ータを、光ディスクの欠陥管理領域またはスペア領域に
書き込むようにしたもので特徴とする。
【0041】本発明の請求項8にかかる光ディスク装置
によれば、少なくとも1つの連続したデータ記録終了後
または光ディスク経由時に、ホストコンピュータのメ
モリー上に遮断した欠陥リストの情報または代替させたデ
ータを、光ディスクの欠陥管理領域またはスペア領域に
書き込むようにしたもので特徴とする。
したもののである。
【0048】本発明の実施の一形態にかかる光ディスク装置の作成について説明する。
【0049】動作開始時に、まず、光ディスク71に記録されているズーム機構と、欠陥リスト1、欠陥リスト2の情報が光ディスク装置のRAM74、75および1にそれぞれ記録され、欠陥リスト1、欠陥リスト3として選択される。
【0050】欠陥リスト3の内容は図2に示す如くである。欠陥リスト3は4つの項目(1)～(4)からなる。
【0051】(1)SLRビット、リニア交差かどうかを示すためのビットである。0 h はリニア交差、1 h はそれ以外の場合であり、(2)欠陥ブロックの先頭セクタの物理アドレス、(3)代替されたブロックの先頭セクタの物理アドレス、(4)代替されたブロックの先頭セクタのメモリアドレスである。
【0052】使用しない項目には0 h を入力している。なおこの0 h の位置で、欠陥リスト2の内容が既存データか否か、新規データか否かが決定される。またSLRビットによってリニア交差か否か、スキップ交差か否かが判別される。
【0053】欠陥リスト3および代替パッファメモリ2への書き込み動作は次の如くである。データ管理部分を構成するストレージデータよりパッファアドレスが指定されデータの書き込み命令が発行され、書き込みが行われる。このとき、書き込んだデータが欠陥ブロックは例えば1ブロック単位で行うものとする。これは光ディスク装置における信号処理が16セクタ1ブロック(32Kバイト)としてエンコーディングするためである。
【0054】書き込み先のブロックに記録後、データを再生しブロック内の読み込みバイト数に欠陥の有無が調べられる。所定値以上の読みの有無はブロックが信頼性がないブロックとして、欠陥ブロックとされ、欠陥ブロック発生検出手段31にて検出される。
【0055】欠陥ブロックとして検出した場合、欠陥ブロックの先頭セクタの物理アドレスが転送ブロックのアドレス検出手段32によって検出され、欠陥ブロックの先頭セクタの物理アドレスとして気候リスト3に追加される。そしてリニア交差を行う場合には欠陥リスト3のSLRビットが0 h にてセットされ、スキップ交差を行う場合には欠陥リスト3のSLRビットが1 h にてセットされる。
【0056】リニア交差を行う場合、ホストコンピュータにて受信後一時記憶した入出力バッファメモリ(84)から、欠陥ブロックに記録予定であったデータが代替パッファメモリ2に移動させ保存される。または光ディスク装置から再生された欠陥ブロックのデータを一時記憶した入出力バッファメモリ77から転送してもよい。これにより信頼性のないブロックのデータが読み出されなくな
【0066】次に、本発明の実施の一形態にかかる他の光ディスク装置について説明する。

【0067】図3は本発明の実施の一形態にかかる他の
光ディスク装置のシステム構成を示すブロック図であ
る。

【0068】本発明の実施の一形態にかかる他の光ディ
スク装置は、光ディスク装置部分70とデータ管理シス
テム部分80Aで構成されている。光ディスク装置部
分70（図6参照）に欠陥ブロック発生検出手段31と
欠陥ブロックのアドレス検出手段32を含む欠陥エラー
検出手段を備えている。データ管理システム部分80
Aは、データ管理システム部分80（図6参照）のデー
タ管理情報を記憶する記憶領域82に、欠陥リスト4を
記憶する領域51、代替バッファメモリ領域52および
アドレス変換部領域53が形成されている。図3におい
て、領域51、52および53を領域5で表している。
以下、領域51を欠陥リスト4領域51と記す。

【0069】本発明の実施の一形態にかかる他の光ディ
スク装置の作用を、図4を用いて説明する。

【0070】まず、光ディスク装置より光ディスクの欠
陥リスト2の情報が欠陥リスト領域51に欠陥リスト4
として記録される（A）。次にデータ管理システム80
Aから論理アドレスが指定されて書き込みを行うデー
タを転送バッファメモリ12に読み出されて、論理アド
レスとデータの書き込み命令が光ディスク装置部
分70Aに発行される（B）。この時、転送されるデータ
は例えば1ブロック単位となる。これは光ディスク装置
の信号処理が16シナリオ1ブロック（32Kバイト）
として転送するためである。

【0071】論理アドレスとデータの書き込み
命令を受けて、光ディスク装置部分70Aは受信バッ
ファメモリ4に格納され、書き込み先のブロックに記録後、デー
タが再生されブロック内の誤りバイト数によって欠陥
の有無が欠陥エラー検出手段3によって調べられる。
所定以上の誤りのあるブロックは信頼性がなくブロックと
して欠陥ブロックとされる。

【0072】欠陥ブロック発生検出手段31によって欠
陥ブロックとして検出された場合、欠陥ブロック発生
のエラー情報と共にそのブロックの先頭セクタの物理アド
レスが欠陥ブロックのアドレス検出手段32によって検
出され、検出された物理アドレスをデータ管理システム
80Aに送信される（C）。データ管理システム80A
では、受信した物理アドレスを欠陥ブロックの先頭セク
タの物理アドレスとして欠陥リスト4に追加される（C
1）。そしてエラー検出を行う場合には欠陥リスト4
のSRLビット1がセットされる。

【0073】リモート接続を行う場合、データ管理シス
テム80Aの転送バッファメモリ5から欠陥ブロックに記
録予定であったデータが代替バッファメモリ52に移動
させられて保存される（C2）。または、光ディスク装
置部70からエラー情報と共に欠陥ブロックに記録予
定であったデータを送送してもよい。この時はこのデー
タがデータ管理システム80Aの代替バッファメモリ52に保
存される（C3）。保存された代替データの先頭セクタ
のメモリアドレスが欠陥リスト4に追加される（C
4）。

【0074】スケジュールを実行する場合は、代替データは
欠陥ブロックの次に正常なブロックへ記録されることで、
データ管理システム80Aから、次ブロックの先頭セク
タのアドレスから2ブロック単位のデータ記録を開始
する指示が発行される（D）。光ディスク装置部分70
では、この指示に基づきスケジュールが実行される。
連続した記録の前にスケジュールの指定をしておけば、指示
（D）を毎回送信しなくてもよい。

【0075】連続したデータ記録（ビデオ記録）が終了
した後、各交換方式で下記のようなデータの保存が行
われて終了する（E）。

【0076】まず、リモート接続の場合には、データ管理シス
テム80Aに記録された欠陥リスト4の情報と代替バッ
ファメモリ52のデータが光ディスクシステム71の欠陥管理
領域（欠陥リスト2）とスペア領域に記録される。

【0077】スケジュールを実行する場合には、データ管理シス
テム80Aの欠陥リスト4の情報が光ディスクの欠陥管理
領域（欠陥リスト2）に記録される。この時、欠陥リ
スト4の情報から光ディスク装置部分70A内のボルノ
構成も訂正される。

【0078】欠陥リスト4の内容は、図2の欠陥リスト
の代替バッファメモリ2をデータ管理システム80A
の代替バッファメモリ52に置換するかと同様である。

【0079】上記したように本発明の実施の一形態にか
かる他の光ディスク装置において、リモート接続記録
中の光ディスクシステム71の欠陥管理領域およびスペア領域に
書き込みデータがデータ管理システム80Aのメモリ
に追加され、光ビックアップの大きな移動が一時的に
停止される。

【0080】本発明の実施の一形態にかかる他の光ディ
スク装置では、少なくとも1つの連続したデータ（ビデ
オ記録等）の記録中または再生中において、光ディスク
装置部分70A内で行うリモート接続またはスケジュール連
一時的な欠陥管理データをデータ管理システム80A側
の代替バッファメモリ52に保存しており、少なくとも
1つの連続したデータ（ビデオ記録等）の記録が終了後ま
たは再生終了後、または光ディスクシステム71の取り出し時にホ
ストマシンの欠陥管理メモリ（代替バッファメモリ、
欠陥リスト）からの情報を光ディスクシステム71の欠陥管理領域
またはスペア領域に記録される。

【0081】このためリモート接続記録中の光ディスク
システム71の欠陥管理領域およびスペア領域への書き込みデー
タがデータ管理システム80Aのメモリに追加され、
光ビックアップの大きな移動が一時的に停止させられ
で、記録中に光ビックアップの移動をなくすことができ、リアルタイム記録等の失敗を防ぐことができる。
【0082】
【発明の効果】以上説明したように本発明につかえる光ディスク装置によれば、連続した記録または再生中に欠陥ブロックが発生した場合、光ディスクのスベース領域や欠陥管理領域にビックアップを移動してデータを書き込みに行かなくても、一時的に代替バッファメモリに保存しておくため、リアルタイムのビデオ映像等の記録または再生を途切れるすることなく継続させることができるという効果が得られる。
【0083】さらに、連続したデータ記録または再生が終了した後、または光ディスクを取出す時にメモリに保存した情報を光ディスクに書き込みに行くようにしたことにより、光ビックアップの移動時間によってリアルタイムの映像データの記録が中断する失敗を防ぐことができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の一形態にかかる光ディスク装置のシステム構成を示すブロック図である。
【図2】本発明の実施の一形態にかかる光ディスク装置における欠陥リスト3の説明に供する模式図である。