RECORDING AND REPRODUCING METHOD FOR INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING AND REPRODUCING DEVICE

PROBLEM TO BE SOLVED: To quickly perform processing of start of information recording and finish of recording for an information recording medium. SOLUTION: Information recording is performed in a form of a simple format. When a simple format is performed, after information to be recorded in a data recording area DRA out of a data recording area DRA previously decided conforming to a standard format, a recording manager are RMA, a read-in area LIA, and read-out area LOA is recorded, record management data is recorded in the recording manager are RMA and the read-in area LIA. Also, when an indication of finalize-processing is performed, an information recording medium being easily applicable to a general information recording and reproducing device is made by re-record the record control data conforming to the standard format in an information recording medium, in which information recording is performed conforming to a simple format. COPYRIGHT: (C)2001, JPO
情報記録媒体の記録再生方法及び情報記録再生装置

【発明の名称】
情報記録媒体の記録再生方法及び情報記録再生装置

【発明の要約】
情報記録媒体への情報記録開始と記録終了の処理を迅速に行う。
簡易フォーマットの形式で情報記録を行うようにする。簡易フォーマットの指示が示されると、標準フォーマットに準拠して予め決められたデータ記録エリアDRAとレコーディングマネージャエリアRMAとリードインエリアLIA及びリードアウトエリアLOAのうち、データ記録エリアDRAに記録すべき情報を記録した後、レコーディングマネージャエリアRMAとリードインエリアLIAに記録管理データを記録する。また、ファイナライズ処理の指示がなされると、簡易フォーマットに準拠して情報記録が行われている情報記録媒体に対し標準フォーマットに準拠した記録管理データを再記録することにより、簡単に一般的な情報記録再生装置への適用が可能な情報記録媒体にする。
【特許請求の範囲】
【請求項１】情報記録と再生が可能な情報記録媒体の記録再生方法であって、簡易フォーマットに準拠して情報記録を行う際、標準フォーマットに準拠して予め決められた記録管理データに比して、少ない記録管理データを記録することを特徴とする情報記録媒体の記録再生方法。

【請求項２】情報の記録を行うべき情報記録媒体が記録でないと判断すると、前記簡易フォーマットでの記録を行うことを特徴とする請求項１に記載の情報記録媒体の記録再生方法。

【請求項３】前記記録管理データを、標準フォーマットに準拠して予め決められたデータ記録エリアとレコーディングマネージャエリアとリードインエリア及びリードアウトエリアのうち、前記レコーディングマネージャエリアと前記リードインエリアに記録することを特徴とする請求項１または２に記載の情報記録媒体の記録再生方法。

【請求項４】前記リードアウトエリアには、誤り訂正単位ブロックの数倍分のリードアウト情報を記録することを特徴とする請求項３に記載の情報記録媒体の記録再生方法。

【請求項５】前記リードアウトエリアには、３パックブロック分のリードアウト情報を記録することを特徴とする請求項３に記載の情報記録媒体の記録再生方法。

【請求項６】前記簡易フォーマットに準拠して情報記録が行われている情報記録媒体に対しファイナルライズ処理を行う際、標準フォーマットに準拠した記録管理データを再記録することを特徴とする請求項１から５のいずれか１項に記載の情報記録媒体の記録再生方法。

【請求項７】情報記録の指示がなされると、前記情報の記録開始までに要する遅延時間内における情報を受け入れると、前記保持した情報を前記実際の記録開始時から記録させる機能記録装置を備えることを特徴とする請求項１から２のいずれか１項に記載の情報記録再生装置。

【発明の詳細な説明】
【０００１】
【発明の属する技術分野】本発明は、情報の記録又は再生が可能な情報記録媒体を用いて情報の記録又は再生を行う方法及びその方法を用いる情報記録再生装置に関するものである。

【０００２】
【従来の技術】従来、情報の記録と再生が可能な情報記録再生装置として、VTR（Video Tape Recorder）が普及したことは周知の通りである。

【０００３】VTRは、磁気テープを情報記録媒体として情報の記録又は再生を行うものであるため、ランダムアクセスやインタラクティビティを容易に行うことができないという課題があった。

【０００４】例えば、既に情報が一部記録されている磁気テープの残りの未記録領域に新規の情報を記録させようとする場合、既に情報が記録されている領域の終端位置と未記録領域の開始位置をモニタリングしながら見つけ出さなければならないため、新規情報を記録させる前の操作に時間がかかるという課題があった。

【０００５】また、複数の情報が飛び飛びに記録されている磁気テープの複数の空白領域に新規の情報を記録させようとしても、それらの空白領域を有効に利用して記録させることは必ずしも容易ではなかった。

【０００６】近年、こうしたVTRの課題を解決し得る情報記録媒体として、CD（Compact Disc）やDVD（Digital Video DiscまたはDigital Versatile Disc）等のディスク型の情報記録媒体が開発された。

【０００７】これらの情報記録媒体は、所在のデータを記録するための記録領域（以下、データ記録エリアという）と、記録管理データを記録するための管理エリアとが所定の規格に基づいて設けられている。
【0008】また、記録ディスク型の情報記録媒体は、急速な技術開発と相まって、様々な形態のものが次々と開発されている。例えば、再生専用DVR-ROMに続いて、追記可能なDVR-Rが開発され、更に記録内容の書き換えが可能なRVR-DW等が開発さ

【0009】で、新規の情報記録媒体が開発される度に、それぞれ異なった独自の記録再生フォーマットを採用したのでは、ユーザーが以前から蓄えていた情報記録媒体を新しく開発された情報記録媒体と同様に扱うことができなくなり、情報資源の有効活用の道を阻むこととなる。このため、記録管理エリアには、種類の異なる情報記録媒体であっても、情報再生時には共通の再生を可能にするための記録管理データを記録しておくようになっている。

【0010】例えば、上の記録と再生が可能なDVD
では、管理エリアは、R-インフォメーションエリア（R-Information Area）とリードインエリア（Lead-in Area）及びポーターアウトノリードアウトエリア（Border-out/Lead-out Area、以降、リードアウトエリアと総称する。）から成り、更にR-インフォメーションエリアは、パワーキャリプレーションエリア（Power Calibration Area）とレコーディングマネジメントエリア（Recording Management Area）で構成されているが、レーザイントレアとリードアウトエリアの内容を再生専用DVD-Rと等しくすることによって、再生のコンパチビリティを確保している。

【0011】そして、データ記録エリアに新規のデータを記録したり、データ記録エリアに記録されているデータを編集する等の記録を伴う処理が行われる度に、これらの管理エリアに所定の記録管理データを再書き込みすることによって、記録状態の管理を行っている。

【0012】[発明が解決しようとする課題]として、従来例として説明した上記の記録と再生が可能なDVDは、ランダムアクセスや優れたインタラクティブ編集を可能とする次世代情報記録媒体として注目されているが、未だ解決すべき課題が残されている。

【0013】上記のVTRは、磁気テープを利用する関係上、ランダムアクセスやインタラクティブ編集については操作性に難があるが、ユーザーにとっては、データを記録するための記録開始時点と記録終了時点を直感的に理解し易いという、一見単純ではあるが基本的な操作性に優れた面も存在する。

【0014】例えば、ユーザーがテレビジョン放送を録画する際に、予め磁気テープの録画開始位置を設定しておき、所望の画面になった時点で録画開始を押すだけでは、上記の録画開始位置から録画が開始されたと直感的に理解することができるという利点がある。また、所望の画面が終了した時点で録画停止を押すだけで、録画が終了したことを直感的に理解することができるという利点がある。

【0015】これに対し、記録の記録と再生が可能なDVDにあっては、記録管理データに基づいてデータ記録エリアに記録されるデータを管理する必要上、例えば写真記録ディスクの記録開始にあっては、ユーザーが録画開始（記録開始）又は録画終了（記録終了）の指示をした際、管理エリア内の全てのエリアに記録管理データを再書き込み（更新）することとしている。また、記録済ディスクについても、リードインエリアの一回と、RMD
の一部及びリードアウトエリアを所定領域再書き込み（更新）する。

【0016】このため、記録管理データの再書き込みのための遅延時間が発生することとなり、実際の録画開始又は実際の録画終了の処理がユーザーの指示した時点で、著しく遅延時間されるという問題があった。

【0017】ちなみに、上の記録と再生が可能なDVDでは、記録開始の指示をした時点から実際の記録開始が行われるまでの遅延時間が1倍速に換算して約5秒、記録終了の指示をした時点から実際の記録終了が行われるまでの遅延時間が1倍速に換算して約60秒～120秒程度となり遅延時間量が必要としていた。

【0018】よって、ユーザーにとっては実際の録画開始と記録終了がなされた時点で直感的に理解し難く、VTRに比して操作性が必ずしもよくないという結果をもたらす場合があった。

【0019】例えば、図10(a)に模式的に示すように、ユーザーがテレビジョン放送をモニタリングしながら所望の画面から録画しようとした場合、録画開始の指示をした時点tsから所定の遅延時間（約65秒間）が経過した時点tr後でなければ実際の録画が開始されないため、上記の遅延時間（約65秒間）分の録画が行われないという問題があった。また、図10(b)に示すように、録画終了の指示をした場合、その指示の時点teから所定の遅延時間（約60秒～120秒）が経過した時点tf後でなければ実質的な録画が終了しないため、その記録管理データの記録完了時点tf以前でなければDVDを情報記録再生装置から取り出したり、新たなDVDに入れ替える等の操作を行うことができず、結果的に操作性が悪くなる場合が生じるという問題があった。

【0020】本発明はこうした記録開始と記録終了時ににおける遅延時間を大幅に短縮し、例えば、ユーザーに対する操作性の向上等を実現することが可能な情報記録再生方法及びそれぞれを用いた情報記録再生装置を提供することを目的とする。

【0021】【課題を解決するための手段】上記目的を達成するため本発明の情報記録媒体の記録再生方法及び情報記録再生装置は、簡易フォーマットに準拠して情報記録を行う
際、標準フォーマットに準拠して予め決められた記録管理データに比して、少ない記録管理データを情報記録媒体に記録することとした。また、上記記録管理データを標準フォーマットに準拠して予め決められたデータ記録エリアとレコーディングマネージャエリアとリードインエリア及びリードアウトエリアのうち、上記レコーディングマネージャエリアと上記リードインエリアに記録することとした。また、上記リードアウトエリアには、2 E C C ブロック分のリードアウト情報も記録することとした。
【0022】これらの記録再生方法及び情報記録再生装置によれば、簡易フォーマットに準拠して情報記録を行うと、標準フォーマットに準拠して少ない記録管理データが情報記録媒体に記録されるため、情報の記録開始と記録終了の処理が迅速に行われる。
【0023】また、上記簡易フォーマットに準拠して情報記録が行われている情報記録媒体に対しファイナライズ処理を行う際、標準フォーマットに準拠した記録管理データを再記録することとした。
【0024】これらの記録再生方法及び情報記録再生装置によれば、簡易フォーマットに準拠して情報記録が行われている情報記録媒体を標準フォーマットに準拠した形態で記録することができる。また、情報記録の指示がなされると、上記情報が実際の記録開始前に要する遮延時間内における情報を一時的に保持し、上記保持した情報を上記記録開始時から記録させることとした。
【0025】この記録再生方法及び情報記録再生装置によれば、情報記録の指示がなされると即座に情報を保持して記録が開始されるまでの誤延時間中の情報を一時的に保持しておき、その保持しておいた情報の実際の記録開始時から記録させる。これにより、誤延時間中の情報を欠落することなく記録することができる。
【0026】発明の実施の形態）以下、本発明の実施の形態を図面を参照して説明する。尚、一実施形態として、情報記録と情報再生が可能なDVDにおける情報記録再生方法と、その方法を用いる情報記録再生装置について説明する。
【0027】図1は、DVD、ディスクおよびDVDのデータ構造の模式図を示す説明図である。図2は、DVDの構造およびDVDの再生装置の構成を示す図である。
【0028】図1において、本ディスクには、クランビングエリアC Aを中心にグループ（Groove）とランド（Land）が螺旋状に形成されており、グループとランドには、物理アドレスを設定するためのウォール（Wobble）とランドプリビット（Land Pre-pit）がそれぞれ形成されている。
【0029】上記のウォールとランドプリビットの情報に基づいて、情報記録再生装置のピックアップがウォールに対して位置合わせ制御されて、グループへの情報記録（データ書き込み）とグループからの情報再生（データ読み取り）が行われるようになっている。
【0030】記録のデータ書き込みは主にデータ読み取りが行われるグループには、半径方向内側（クランビングエリアC A側）から半径方向外側に向けてレコーディングエリア（R-Information Area：RIA）とインフォメーションエリア（Information Area：IA）が割り当てられている。
【0031】R-インフォメーションエリアRIAは、パワーキャリブレーションエリア（Power Calibration Area：PCA）とレコーディングマネージメントエリア（Recording Management Area：RMA）で構成され、インフォメーションエリアIAは、リードインエリア（Lead-in Area：LIA）とデータ記録エリア（Data Record table Area：DRA）及びリードアウトエリア（Lead-out Area：LOA）で構成されている。
【0032】ここで、データ記録エリアDRAには、オーディオデータやビデオデータ等の各種コンテンツデータ（以下、メディアデータという）及びコンテンツデータをファイルとして管理するためのファイル管理情報が記録される。レコーディングマネージメントエリアRMAとリードインエリアLIA及びリードアウトエリアLOAには、データ記録エリアDRAに記録されるメディアデータの記録状態を示す記録管理データが記録される。
【0033】パワーキャリブレーションエリアPCAは、情報記録再生装置がデータ書き込みを行う際、試し書き等を行い順当な動作状態でのデータ書き込みを行うようにピックアップの光量等を調整するために設けられている。
【0034】レコーディングマネージメントエリアRMAには、リードイン、リードアウト、及びDRAの記録状態を管理するための記録管理データが記録される。
【0035】リードインエリアLIAには、ディスクの物理情報を示す記録管理データが記録される。
【0036】リードアウトエリアLOAは、データ記録エリアDRAに記録されるメディアデータの終端位置に設定される。リードアウトエリアLOAにはリードアウト情報、例えば（00）hのデータが記録される。リードアウトエリアLOAの記録開始位置は、メディアデータのデータ量に応じて変化する。
【0037】これまでは、各エリアPCA、RIA、LIA、DRA、LOAの領域アドレスと、データの記録アドレス、上記のウォールとランドプリビットに基づいて物理的に決められたECCブロックアドレスに従って設定されるようになっている。
【0038】図2は、ECCブロックの1単位の構成を示す説明図であり、データフィールドと、そのデータフィールドに付加されたPOフィールド及びPIフィール
ドで構成されている。
【0039】上記のデータフィールドは16データセクタ（data sectors）から成り、1データセクタは12列（rows）から成り、更に、各列は172バイト（bytes）で構成される。換言すれば、データフィールドにおける各列のデータ数は172バイトに設定され、12列ずつの群をデータセクタと呼ぶ。したがって、データフィールドには、（172バイト）×（12列）×（16データセクタ）＝（172バイト）×（192列）＝3,3024バイトのデータB0、0〜B191、171が記録可能となっている。
【0040】ポフィールドは、16列×172バイトから成り、図中の縦方向のデータ誤り訂正を行うためのアウターコーディングデータ（outer-code parity data）が記録される。つまり、ポフィールドは、データフィールド内の16データセクタに対応して、16列のアウターコーディングデータが記録される。
【0041】PIフィールドは、20列×10バイトから成り、図中の横方向のデータ誤り訂正を行うためのインナーコーディングデータ（inner-code parity data）が記録される。
【0042】更に図3は、上記データフィールドを構成する16データセクタのうち、1つのデータセクタの構成を示し示した説明図である。同図において、12列×172バイトのうち、先頭の4バイトにはIDデータ（Identification data）、次の2バイトには1EDデータ（ID Error Detection code data）、更に次の6バイトにはCPRMA1データ（Copyright Management Information data）がそれぞれ記録され、最後の4バイトにはEDCデータ（Error Detection code data）が記録される。
【0043】そして、CPRMA1データの次からEDCデータの前までの2048バイトの部分に、本来のメインデータ（Main data）が記録されるようになっている。
【0044】更に、このデータセクタに、図2に示した1列×172バイト分のアウターコーディングバリティデータと、13列×10バイト分のインナーコーディングバリティデータが付加されて成る。13列×182バイトのデータ単位でレコーディングされている（recording sector）と呼ぶ。
【0045】そして、図2中の各列に位置する182バイト（172＋10バイト）のデータを91バイトずつの2組に分け、91バイトずつのデータの先頭に同期データSYNCを付加して8／16変換することによ り、図4に示すように、1対の同期フレーム（SYNC frame）が13列となるデータとしてディスクに記録される。
【0046】尚、8／16変換される前の91バイトのデータは728ビットであるが、91バイトのデータを8／16変換することで1456ビットに変換され、この8／16変換後のビット単位を特にチャンネルビット（channel bits）と呼んでいる。
【0047】このように、1データセクタを2048バイト、1ECCブロックを16データセクタと決め、このECCブロック単位で各エリアPCA、RIA、LIA、DRA、LOAの領域アドレスと、データ記録アドレスを表すこととしている。ECCブロックが誤り訂正単位ブロックとなる。
【0048】尚、図5に示すように、パワーキャリブレーションエリアPCAは、ECCブロックアドレス（01E80）hから（0203A）hまでの領域に決められている。レコーディングマネージメントエリアRMAは、ECCブロックアドレス（0203C）hから（022F8）hまでの領域に決められている。リードアウトエリアLIAは、ECCブロックアドレス（022FA）hから（02FF0）hまでの領域に含まれている。データ記録エリアDRAは、ECCブロックアドレス（03000）hから始まり、リードアウトエリアLOAは、データ記録エリアDRAに記録されたメインデータの後端に所定の範囲に決められている。
【0049】更に、リードインエリアLIAは、ECCブロックアドレス（02F00）hから2ECCブロック分の領域に割り当てられたリファレンスコード（Reference code）記録エリアと、ECCブロックアドレス（02F20）hから192ECCブロック分の領域に割り当てられたコントロールデータ（Control data）記録エリアが備えられる。
【0050】尚、詳細については後述するが、標準フォーマットに基づいて未記録ディスクリーデータ書き込みが行われる場合には、図5に示したレコーディングマネージメントエリアRMAとリードインエリアLIAの全領域エリア（領域）に記録管理データが記録更新される。また、リードアウトエリアLOAも所定の範囲に記録される。また、記録済のディスクに関しては、リードインエリアの一部と、RMDの一部、及びリードアウトエリアを所定領域に書き込み（更新）する。
【0051】一方、簡単フォーマットに基づいて未記録ディスクへの書き込みを行う場合には、最小限のRMA、最小限のLIA、及び32ECCブロックのリードアウトの記録が行われる。また、記録済ディスクへのデータ書き込みが行われる場合には、リードインエリアLIAには記録管理データが記録（更新）されず、必要に応じてレコーディングマネージメントエリアRMAとリードアウトエリアLOAの記録管理データが記録（更新）される。更に、リードアウトエリアLOAは32ECCブロックに設定され、この32ECCブロック分だけが記録されるようになっている。なお、上述の最小限のRMA、最小限のLIAに関しては少し説明を加える。RMAにはディスクの記録状態を示す記録状態情報を含
記録される。例えば、インクジェットプリンター等の記録メディア、または情報記録したときのレーザーパーソや、プログラムエリアの記録状態などが記録される。そして、標準フォーマットではそのような記録状態情報が記録されていないエリアは、0データなどの所定のデータを記録することとなっている。しかし、簡易フォーマットでは、0データなどの記録はせず、例えば、記録または再生の制御に必要な記録状態情報など最小限のRMAの書き込みのみを行うようにする。また、リア内には、ディスの物理的な特性や、データの記録状態などのディスク情報が記録される。例えば、標準フォーマット、ディスクサイズ、ディスクの構造やデータの記録開始位置および終了位置などが記録される。また、LIAには、標準フォーマットでは情報再生装置の設計余裕度を高めるために、0データなどの所定のデータを付加している。しかし、簡易フォーマットでは、この情報再生装置のための附加データは記録せず、例えば、記録または再生の制御に必要なディスク情報など最小限のLIAの書き込みのみを行うようにする。

【0052】また、ファイナライズ処理の場合にも、標準フォーマットの場合と同じように、図5に示したレコーディングマネージャRMAとリードインエリアLIAの全てのエリアに記録管理データが記録される。また、リードアウトエリアLOAも所定の範囲に亘って記録される。

【0053】次に、かかるデータ構造を有するディスクを用いて記録と再生を行う情報記録再生装置1の構成を説明する。尚、一例として、ビデオ情報とオーディオ情報記録再生装置が可能な情報記録再生装置1について説明する。

【0054】図6において、本情報記録再生装置1は、情報記録媒体であるディスク2をコンプレストで所定の線速度で回転させるスピンドルモータ3と、ディスク2に対し光学的に記録（データ書き込み）と再生（データ読み取り）を行うビックアップ4と、スピンドルモータ3とビックアップ4をサーボ制御するためのサーボ回路5とが備えられている。

【0055】更に、ディスク2に記録すべきデータを生成するための記録系6と、ディスク2に記録されているデータを再生するための再生系7と、情報記録再生装置1の全体を制御する中央制御回路8と、ユーザが中央制御回路8に対して所望の指示をするための操作部9と、表示部10と、物理アドレス検出回路25を備えて構成されている。

【0056】ここで、操作部9には、少なくとも、ユーザーが記録開始の指示をするための操作スイッチ9aと、記録終了の指示をするための操作スイッチ9bと、再生開始の指示をするための操作スイッチ9cと、再生終了の指示をするための操作スイッチ9dと、後述のファイナライズ処理を指示するための操作スイッチ9fが設けられている。

【0057】記録系6は、A/アルコンバータ11、12、オーディオ圧縮回路13、ビデオ圧縮回路14、マルチプレックス回路15、記録バックアップモリ16、エンコーダ17及び記録回路18を備えて構成されている。また、記録系6は、ユーザーが操作スイッチ9a、9bを操作して記録開始と記録終了の指示をすると、中央制御回路8からの制御信号C1、C2、C3、C4に従って、その開始から終了の期間内において、外部から供給されるビデオ情報とオーディオ情報記録管理データと共にディスク2に記録する。

【0058】ここで、A/アルコンバータ11は、外部から供給されるアナログのオーディオ信号S1をデジタルのオーディオデータDA1に変換して出力する。

【0059】オーディオ圧縮回路13は、中央制御回路8からの制御信号C1によって指定される所定の圧縮方式に基づいて、オーディオデータDA1をデータ圧縮し、そのデータ圧縮したオーディオデータ（以下、圧縮オーディオデータという）DP1をマルチプレックス回路15に供給する。尚、基本実装形式では、リニアPCMとAC-3及びMPEGオーディオに準拠したデータ圧縮方式が適用され、ユーザーが操作部9を操作することにより、これらの圧縮方式を任意に指定することが可能となっている。

【0060】A/アルコンバータ12は、外部から供給されるアナログのビデオ信号S1をデジタルのビデオデータDV1に変換して出力する。

【0061】ビデオ圧縮回路14は、ビデオデータDV1をMPEG2ビデオフォーマット（ISO 13818-2）に従ってデータ圧縮し、そのデータ圧縮したビデオデータ（以下、圧縮ビデオデータという）DPV1をマルチプレックス回路15に供給する。

【0062】マルチプレックス回路15は、中央制御回路8からの制御信号C2で指定される所定タイミングに従って、圧縮オーディオデータDA1と圧縮ビデオデータDPV1をマルチプレックスすることにより、時分割多重を施した圧縮データDPWにして記録バックアップモリ16へ供給する。

【0063】記録バックアップモリ16は、マルチプレックス回路15から供給される圧縮データDPWを一時的に格納し、タイミング調整を行ってエンコーダ17側へ送出する。

【0064】エンコーダ17は、マルチプレックス回路15から供給される圧縮データDPWを、中央制御回路8からの制御信号C3に従って符号化し、それによって生成されるエンコードデータDWEを記録回路18へ出力する。

【0065】記録回路18は、中央制御回路8から供給される制御信号C4に従って、エンコードデータDWEに対して電力増幅等の処理を施し、これによって生成させる
れる記録用データDWTをピックアップ4に供給する。したがって、ピックアップ4に内蔵されている半導体レーザ等の光源が記録用データDWTによって駆動され、更に、光源から射出される記録光によって、記録用データDWTが光学的にディスク2に記録される。

【0065】ここで、上記の記録バッファメモリ16は、圧縮データDPWだけを一時的に格納してエンコーダ17側へ送出するだけでなく、ディスク2に記録するための記録管理データDCWもタイミング調整を行ってエンコーダ17側へ送出するようになっている。

【0067】すなわち、ユーザーが操作釘スイッチ9aを操作して記録開始の指示をすると、それに応じて中央制御回路8は、その指示直後から記録式6に対してビデオ信号SV1とオーディオ信号SAIを記録するための処理を開始させるが、ディスク2に既に記録されている記録管理データDCRを調べ、ディスクが未記録状態であるか否かを識別し、更に所定の記録管理データDCWをディスク2に記録させた後に、実際にビデオ信号SVIとオーディオ信号SAIの記録を開始させる。

【0068】よって、上記のディスク2に既に記録されている記録管理データDCRを調べて更に所定の記録管理データDCWをディスク2に記録し終えるまでに要する遅延時間tの間でも、マルチブレックス回路15から記録バッファメモリ16へ圧縮データDPWが供給される。このため、遅延時間tの間にマルチブレックス回路15の圧縮データDPWを記録するバッファメモリ16を介して単にエンコーダ17側へ供給したのでは、この圧縮データDPWと記録管理データDCWとの間で混信を招くことになるため、記録バッファメモリ16は、記録管理データDCWがディスク2に記録されるまでの遅延時間tの間に供給される圧縮データDPWを保持し、遅延時間tの経過直後からその保持していた圧縮データDPWをエンコーダ17側へ送出することで、上記の混信を防止している。

【0069】更に、記録バッファメモリ16は、遅延時間tの間に保持しておいた圧縮データDPWの全てを一括してエンコーダ17側へ送出するのではなく、外部から継続して供給されるビデオ信号SV1とオーディオ信号SAIの供給タイミングに同期して、圧縮データDPWを時系列上で古いものから順にエンコーダ17側へ送出し、その後の記録終了の指示が与えられるまでの期間内に供給されるビデオ信号SV1とオーディオ信号SAIについての圧縮データDPWも、同様に同期をとってエンコーダ17側へ送出する。

【0070】したがって、図7に示すように、記録バッファメモリ16は、ユーザーが記録開始の指示をした時点tから記録終了の指示をした時点tまでの間T内に外部から供給されるビデオ信号SV1とオーディオ信号SAIに対して、圧縮データDPWを全体的に遅延時間tの分ずらしてエンコーダ17側へ連続的に送出する。この結果、上記の期間T内に供給されるビデオ信号SV1とオーディオ信号SAIを送ることなくディスク2に記録させることができている。

【0071】更に、遅延時間tの遅延が生じるものの、実質的に記録開始の指示がなされた時点tからのビデオ信号SV1とオーディオ信号SAIが記録されることになるため、従来技術のような遅延時間tの関係が行われないという問題が解消される。例えば、ユーザーが、テレビジョンセットで受信したテレビジョン放送のビデオ信号SV1とオーディオ信号SAIを本情報記録再生装置1に供給するとに配線接続し、テレビジョンセットの再生映像を見ながら希望の時点tで記録開始の指示をすると、その時点tからのテレビジョン放送を欠落することなくディスク2に記録させることができる。

【0072】また、操作釘スイッチ9aによって記録終了の指示がなされると、中央制御回路8は、記録バッファメモリ16中の全ての圧縮データDPWをディスク2に記録させた後、記録完了を示すための記録管理データDCWをディスク2に記録し、最終的に記録処理を終了させる。この記録完了を示すための記録管理データDCWともに、中央制御回路8から記録バッファメモリ16へ供給し、記録バッファメモリ16を介してエンコーダ17側へ送出させることで、ディスク2に記録させるようになっている。

【0073】尚、記録バッファメモリ16の容量によっては、遅延時間tを全て吸収できない場合があるが、その場合でも、最小の欠落時間で記録を開始することが可能である。

【0074】また、操作釘スイッチ9aによって後述のファインライズ処理の指示がなされると、中央制御回路8は、ファインライズ処理のための記録管理データDCWを記録バッファメモリ16へ供給し、記録バッファメモリ16を介してエンコーダ17側へ送出させることで、その記録管理データDCWをディスク2に記録させるようになっている。

【0075】尚、これから記録開始時の記録管理データDCWと記録終了時の記録管理データDCW及びファインライズ処理時の記録管理データDCWは、図6に示すエンコーダ17及び記録回路18を利用し、記録用データDWTとしてピックアップ4に供給されることで、ディスク2に記録される。

【0076】再び図6において、再生系7は、D／Aコンバータ19、20、ビデオ伸張回路21、オーディオ伸張回路22、デマルチブレックス回路23、再生バッファメモリ24、デコーダ25及び再生回路26を備えて構成されている。

【0077】ここで、ユーザーが操作釘スイッチ9cを操作すると中央制御回路8がこれを検知し、制御信号5、C5、C6、C7に従って再生系7に再生動作を行わせ、
ユーザーが操作音スイッチ9dを操作すると中央制御回路8がこれを検知して再生系7に再生動作を停止させる。
【0078】再生回路26は、ピックアップ4によってディスク2から読み取られた検出信号（F信号）DRDを、中央制御回路8から供給される制御信号C5に従って波形整形し、その波形整形によって生成される2値の再生データDPPをデコード25に供出する。
【0079】デコーダ25は、中央制御回路8から供給される制御信号C6に従って、上記エンコーダ17のエンコード方式に対応する所定のデコード方式に基づいて再生データDPPをデコード（復元）し、それにより生成されるデコードデータDPRを再生バッファメモリ24へ供給する。
【0080】再生バッファメモリ24は、デコードデータDPRを入力して一時的に格納すると共に、所定タイミングに同期したデコードデータDPAVに配列し直して、デマルチプレックス回路23へ出力する。
【0081】尚、記録した記録紙6に対しユーザが操作音スイッチ9aを操作して記録開始の指示をした場合にも、中央制御回路8は、ディスク2に既に記録されている記録管理データDCHRを調節するために、再生回路26とデコーダ25及び再生バッファメモリ24を作動させ、再生された記録管理データDCHRを再生バッファメモリ24に介して入力するようになっている。
【0082】また、ユーザが操作音スイッチ9fを操作してファイナライズ処理の指示をした場合にも、中央制御回路8は、ディスク2に既に記録されている記録管理データDCHRを調節するために、再生回路26とデコーダ25及び再生バッファメモリ24を作動させ、再生された記録管理データDCHRを再生バッファメモリ24に介して入力するようになっている。
【0083】デマルチプレックス回路23は、中央制御回路8から供給される制御信号C7に従って、デコードデータDPAV内に時分割多重されているビデオ情報に関するデータDPAOとオーディオ情報に関するデータDPAOとをデマルチプレックスする。そして、上記データDPAVをビデオ拡張回路21に、上記データDPAOをオーディオ拡張回路22にそれぞれ供給する。
【0084】ビデオ拡張回路21は、中央制御回路8から供給される制御信号C7に従って、ビデオ情報であるデータDPAOに対して、上記ビデオ圧縮回路14の圧縮方式に対応する所定の圧縮処理を施すことにより、伸張されたビデオデータDPAOを出力する。
【0085】オーディオ拡張回路22は、中央制御回路8から供給される制御信号C7に従って、オーディオ情報であるデータDPAOに対して、上記オーディオ圧縮回路13の圧縮方式に対応する所定の伸張処理を施すことにより、伸張されたオーディオデータD AOを生成して出力する。
【0086】D/Aコンバータ19は、伸張されたビデオデータDVOをアナログのビデオ信号SVOに変換して出力する。D/Aコンバータ20は、伸張されたオーディオデータDAOをアナログのオーディオ信号SAOに変換して出力する。また、オーディオ情報のデータDPAOをデジタルデータのまま外部へ出力するようになっている。
【0087】物理アドレス検出回路25は、記録時に再生時にピックアップ4で検出されるディスク2のグループとラベルのビットから反射光の検出信号を入力し、この検出信号を波形整形して2値化することにより、物理アドレスを表すアドレス検出信号DADRを生成して中央制御回路8へ供給する。
【0088】中央制御回路8は、記録時に再生時にピックアップ4で検出されるディスク2のグループとラベルから反射光の検出信号を入力し、この検出信号を波形整形して2値化することにより、物理アドレスを表すアドレス検出信号DADRを生成して中央制御回路8へ供給する。
【0089】すなわち、中央制御回路8は、上記マイクロプロセッサによって、サーボ回路5と記録系6及び再生系7の動作を制御すると共に、ユーザの指示を操作部9を介して受信し、更に、本記録再生装置1の現在の動作内容や、記録情報や再生情報に関連する各種情報等や、ユーザに記録再生装置1の操作方法を提示するためのメニュー表示等を表示部10に表示する。更に、物理アドレス検出回路25からのアドレス検出信号DADRに基づいて、サーボ回路5と記録系6及び再生系7を同期制御し、図1に示したECCブロックアドレスに基づいて、ディスク2への記録と再生を行うようになっている。
【0090】次に、かかる構成を有する情報記録再生装置1の動作例を図8及び図9を参照して説明する。尚、図8は、記録時の動作を示すフローチャート、図9は、ファイナライズ処理時の動作を示すフローチャートである。
【0091】図8において、ユーザが本記録再生装置1にディスク2を装着し、操作ボタン9aにより記録開始の指示をすると、簡易フォーマットに従って記録動作が開始される。
【0092】まず、ステップ100において、ディスク2に既に記録されている記録管理データDCHRの読み取りが行われ、次に、ステップ102において、中央制御回路8が記録管理データDCHRを読み取ったか否かを判断する。ここで、記録管理データDCHRを読み取った場合には、装填されたディスク2を全くフォーマットのなされていない新規ディスクと判断し、ステップ104の処理に移行する。一方、記録管理データDCHRを読み取らなかった場合には、装填されたディスク2を既にフォーマットのなされているディスクと判断し、ステップ116の処理に移行する。
【093】上記のステップ104では、図1及び図5に示したRMA及びリードインエリアRIA内の所定のエリアに、簡易フォーマットを示すデータを記録する。

【094】尚、未記録ディスクの処理においては、このステップ104の処理を、後述のステップ112と同時に行っても良い。

【095】標準フォーマットにおいては、リードインエリアRIA全ての範囲内に記録管理データDCWを記録するもので、この処理に要する時間であれば、1倍速に換算して約6.5秒程度の遅延時間t_dが生じる。一方、簡易フォーマットにおいては、およそ5秒程度の処理時間で済む。

【096】ステップ106では、上記のコントロールデータの記録が完了した後、データ記録エリアDRAの先頭アドレス、すなわち、新規ディスクの場合には、ECCブロックアドレス（3000）h（セクタアドレスで言えば、（3000）h）からメインデータの記録が開始される。

【097】次に、ステップ108において、操作鉛スイッチ9_bによって記録終了の指示がなかったか否か判断し、記録終了の操作がなかった場合には、ステップ110に移行する。

【098】ステップ110では、データ記録エリアDRAに記録されたメインデータの終端アドレスから、引き続いて32ECCブロックのリードアウトエリアLOAを記録する。

【099】尚、リードアウトエリアLOAは、32ECCブロックに限るものではないが、後述するステップ116においてリードアウトエリアLOAの開始端アドレスを検出する際に、ビックアップがディスクの未記録領域にとどまることのない程度の記録長は確保されなければならない。一方で、記録時間短縮の上では短い方がよい。通常、1ECCブロックの整数倍が合がよい。

【100】尚、標準フォーマットにおいては、リードアウトエリアLOAの記録時間は、メインデータの終端アドレスの値に応じて変化するが、一般的には、この所要時間は約45秒～130秒となる。一方、本簡易フォーマットにおいては、およそ0.5秒で済む。

【101】次に、ステップ112では、データ記録エリアDRAに記録されたメインデータに関する記録管理データDCWをレコーディングマネージャエリアRMAに記録した後、新規のディスク2が本機能記録再生装置1に装設された場合のデータ記録が続する。尚、メインデータの記録サイズによっては、このステップ112は行われない場合がある。

【102】次に、上記ステップ102において、既にフォーマットが施されたディスク2が装設されたと判断すると、ステップ116の処理に移行する。

【103】ステップ116では、データ記録エリアDRA内に既に記録されているメインデータの最後尾、すなわちリードアウトエリアLOAの開始端のアドレスを検出する。次に、ステップ118において、そのリードアウトエリアLOAの開始端のアドレスからメインデータの記録を開始する。つまり、既に記録されているメインデータの次のアドレスから新規のメインデータを記録する。

【104】次に、ステップ108において、ユーザーが操作鉛スイッチ9_bを操作して記録終了の指示を行ったか否か判断し、記録終了の操作がなされると、ステップ110に移行する。

【105】次に、図9を参照して、ファイナライズ処理の動作を説明する。

【106】図9において、ユーザーが操作鉛スイッチ9_fを操作すると、ファイナライズ処理の動作が開始する。まず、ステップ200において、データ記録エリアDRA内にすでに記録されているメインデータの最後尾、すなわちリードアウトエリアLOAの開始端のアドレスを検出する。更に、標準フォーマットにおける所定の範囲のリードアウトエリアLOAが記録される。

【107】次に、ステップ202において、レコーディングマネージャエリアRMAに記録管理データDCWが記録される。

【108】次に、ステップ204において、標準フォーマットに準拠してリードインエリアRIAの所定のエリアに、ファイナライズされたことを示す所定テータとしての記録管理データDCWが記録される。

【109】このように、ファイナライズ処理が行われると、装備されたディスク2が簡易フォーマットであった場合には、自動的に標準フォーマットに準拠して記録管理データDCWが記録されるため、読み出し専用DVDとのコンパチビリティが確保される。

【110】また、一度ディスクをファイナライズした後、リードインエリアRIA内の所定のエリアに、簡易フォーマットを示すデータを記録することによって、そのディスクを再び簡易フォーマットに戻すことができる。

【111】以上説明したように、本実施形態によれば、簡易フォーマットをもとめることにより、記録開始と記録終了の際の遅延時間を大幅に短縮化することが可能となる。このため、操作性の向上を図ることができる。

【112】また、簡易フォーマットによってデータ記録を行った後に、ファイナライズ処理の指示をすると、簡易フォーマットで記録管理データDCWが記録されていたディスクを標準フォーマットのディスクに変換し、読み出し専用DVDとのコンパチビリティを確保することができる。また、一度ディスクをファイナライズした後、そのディスクを短時間で再び簡易フォーマットに戻すこともできる。
【図１】本実施形態に係る情報記録再生装置の構成を示すブロック図である。
【図６】本実施形態に係る情報記録再生装置の構成を示すブロック図である。
【図７】本実施形態に係る情報記録再生装置のデータ記録タイミングを示すタイミングチャートである。
【図８】本実施形態に係る情報記録再生装置において、未記録DVDにデータ記録を行う場合と、標準フォーマットに準拠してデータ記録を行う場合、及び簡易フォーマットに準拠してデータ記録を行う場合の各動作を説明するためのフローチャートである。
【図９】本実施形態に係る情報記録再生装置において、ファイナルライズ処理を行う場合の動作を説明するためのフローチャートである。
【図１０】従来の情報記録再生装置の問題点を説明するための説明図である。
【図１１】本実施形態に係る情報記録再生装置の構成を示すブロック図である。
【図６】本実施形態に係る情報記録再生装置の構成を示すブロック図である。
【図７】本実施形態に係る情報記録再生装置のデータ記録タイミングを示すタイミングチャートである。
【図８】本実施形態に係る情報記録再生装置において、未記録DVDにデータ記録を行う場合と、標準フォーマットに準拠してデータ記録を行う場合、及び簡易フォーマットに準拠してデータ記録を行う場合の各動作を説明するためのフローチャートである。
### 図2

![Image of a 12-row, 12-column matrix with 16 data sectors (192 rows)].

(ECCブロックの構成を示す図)

### 図3

<table>
<thead>
<tr>
<th>ID</th>
<th>EID (CPU)</th>
<th>Main Data (160 bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Main Data (172 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main Data (172 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main Data (172 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main Data (160 bytes)</td>
</tr>
</tbody>
</table>

(データセクタの構成を示す)

### 図4

![Image of a 32-bit 1456-channel bit and 32-bit 1456-channel bit matrix].

### 図7

![Image of a timing diagram showing the relationship between write start time (ts), write end time (te), and synchronization frame (SYNC frame)].

記録開始の指示時点 (ts)  記録終了の指示時点 (te)
【図10】

(a) 録画開始を指示した時点

(b) 録画停止を指示した時点

フロントページの続き

(72)発明者 川村 克己
埼玉県所沢市花園四丁目2610番地 パイオニア株式 会社所沢工場内

(72)発明者 幸田 健志
埼玉県所沢市花園四丁目2610番地 パイオニア株式 会社所沢工場内
F ターム(参考) 5D044 BC06 CC04 DE22 DE27 DE40
DE53 DE57
5D110 AA17 DA01 DA11 DB03 DC05
DC06 DC15 DE02 DE04